Molecular Crowding and a Minimal Footprint at a Gold Nanoparticle Support Stabilize Glucose Oxidase and Boost Its Activity. Wang Y, Jonkute R, Lindmark H, Keighron JD, Cans A-S.* 2020. Langmuir. 36(1):37–46

Counting the Number of Glutamate Molecules in Single Synaptic Vesicles. Wang, Y., Fathali, H., Mishra, D., Olsson, T., Keighron, J. D., Skibicka, K. P., Cans, A.-S.*  J. Am. Chem. Soc. 2019, 141 (44), 17507–17511. DOI: https://doi.org/10.1021/jacs.9b09414

Ultrafast Glutamate Biosensor Recordings in Brain Slices Reveal Complex Single Exocytosis Transients. Wang Y, Mishra D, Bergman J, Keighron JD, Skibicka KP, Cans A-S.ACS Chem. Neurosci., 2019,10 (3), pp 1744 -1752. DOI:10.1021/acschemneuro.8b00624. 


Membrane Remodeling of Giant Vesicles in Response to Localized Calcium Ion Gradients. Ali Doosti B., Cans A-S., Jeffries G.M.D. and Lobovkina T.J. Vis. Exp. (137), e57789, doi:10.3791/57789 (2018).

Co-Detection of Dopamine and Glucose with High Temporal Resolution. Bergman J, Mellander L, Wang Y  and Cans A-S.Catalysts. 2018, 8(1): 34. 

Counting the Number of Enzymes Immobilized onto a Nanoparticle Coated Electrode. Bergman J., Wang Y., Wigström J. and Cans A-S.* Anal Bioanal Chem 2018, 410:1775-83.

Monitoring the Effect of Osmotic Stress on Secretory Vesicles and Exocytosis. Fathali H., Dunevall J., Majdi S., and Cans A-S.*  J Vis Exp. 2018, 132.

Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Fathali H, and Cans A-S.* Pflugers Archiv-European Journal of Physiology. 2018, 470:125-34.



Extracellular osmotic stress reduces the vesicle size while keeping a constant neurotransmitter concentration. Fathali H., Dunevall J., Majdi S., and Cans A-S.* ACS Chem Neurosci.  2017, 8 (2), 368–375.


Excited Fluorophores Enhance the Opening of Vesicles at Electrode Surfaces in Vesicle Electrochemical Cytometry. Najafinobar N., Lovric J., Majdi S., Dunevall  J., Cans A-S. and Ewing A.G.* Angew. Chem. 2016, 128, 15305-9.

Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis” Najafinobar N., Mellander L. J., Kurczy M. E., Dunevall J.,Angerer T. B., Fletcher J. S. and Cans A-S.* Scientific Reports 2016633702.

The Evidence for Open and Closed Exocytosis as the Primary Release Mechanism. LM. E Kurzcy, L. J Mellander, J. Keighron. A-S Cans and A. G. Ewing. Quarterly Reviews of Biophysics 2016, 49, e12.

Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis. Wigström J., Dunevall J., NajafinobarN., Lovric J., Ewing A.G. and Cans A-S.* Anal Chem 2016, 88(4): 2080-7.


Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. Dunevall J., Fathali H., Najafinobar N. Lovric J., Wigström J., Cans A-S. and Ewing. A. G.* J Am Chem Soc 2015 137 4344-6.

Amperometric Detection of Single Vesicle Acetylcholine Release Events from an Artificial Cell. Keighron J.D, Wigström J., Kurzcy M.E, Bergman J., Wang Y. and Cans A-S.* ACS Chem. Neurosci. 2015, 6:181-88. 


Co-immobilization of Acetylcholine esterase and Choline oxidase to gold nanoparticles: stoichiometry, activity and reaction efficiency. Keighron J. D., Åkesson S.and Cans A-S.* Langmuir, 2014, 30:11348-55.

Two modes of exocytosis in an artificial cell. Mellander L.J, Kurczy M.E., Najafinobar N., Dunevall J., Ewing A.G. and Cans A-S.* Scientific Reports., 2014, 4: 3847

Composition based strategies for controlling radii in lipid nanotubes. Kurczy M.E., Mellander L.J., Najafinobar N., and Cans A-S *. PLoS One, 2014, 9 (1) 81293.


The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Omiatek D., Bressler A.J., Cans A-S, Andrews A.M., Heien M.L. and Ewing A.G.* Scientific Reports, 2013, 3: 1447.


A Functioning Artificial Secretory Cell. Simonsson L., Kurzcy M.E., Trouillon R., Höök F., and Cans A-S.* Scientific Reports, 2012, 2: 824.

Highlights of recent electrochemical measurements in living systems. Trouillon R., Berglund C., Svensson M., Cans A-S. and Ewing A.G.*  Electrochim Acta. 2012, 84: 84-95.

Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. Lin Y., Trouillon R., Svensson M.,  Keighron J., Cans A-S. and Ewing A.G.* Anal Chem. 2012 84(6):2949-54.

Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods. Keighron J.D., Ewing A.G. and Cans A-S.*  Analyst, 2012,137(8):1755-63.


Highlights of twenty years of electrochemical measurements of exocytosis at cells and artificial cells. Cans A-S. and Ewing A.G.*  J Solid State Electrochem. 2011, 15:1437-50.

Mechanics of lipid bilayer junctions affecting the size of a connecting lipid nanotube. Karlsson R., Kurczy M., Grzhibovskis R., Adams K. L., Engelbrektsson J., Ewing A.G., Cans A-S., and Voinova M.*  Nanoscale Research Letters, 2011, 6:421.


Electrochemical Probes for Spatial Detection of Exocytosis and Vesicles.  Mellander L., Cans A-S., and Ewing A.G.*  ChemPhysChem., 2010, 11, 2756-63.

Analytical approaches to investigate transmitter content and release from single secretory vesicles. Omiatek D. M., Cans A-S., Heien M. L., and Ewing A.G.* Anal Bioanal Chem., 2010, 397: 3269-79.

Steady state electrochemical determination of lipidic nanotube diameter utilizing an artificial cell model. Adams K. L., Engelbrektsson J., Voinova M., Zhang B., Eves D., Karlsson R., Heien M., Cans A-S. and Ewing A.G.*  Anal Chem., 2010, 82: 1020-26.


Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic. Cans A-S., Andes-Koback M. and Keating C. D.* J Am Chem Soc., 2008, 130: 7400-06.

Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. Long M. S., Cans A-S., and Keating C. D.*  J Am Chem Soc., 2008, 130: 756-62.


Synthesis and characterization of enzyme–Au bioconjugates: HRP and fluorescein-labeled HRP. Cans A-S., Dean S. L., Reyes F., and Keating C. D.* Nanobiotechnology, 2007, 3:12-22.


The application of microelectrodes to the study of exocytosis. Wittenberg N., Maxson M. M., Eves D., Cans A-S., and Ewing A. G.* in “Electrochemical Methods in Neuroscience”, A. M. Michael and L. M. Borland, Eds., CRC Press, Boca Raton, 2006.


The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. Sombers L. A., Hanchar H. J., Colliver T. L.,  Wittenberg N., Cans A-S., Arbault S., Amatore C., and Ewing A. G.* J Neurosci., 2004, 24: 303-309.


Amperometric detection of exocytosis in an artificial synapse. Cans A-S.,  Wittenberg N., Eves D., Karlsson R., Karlsson A., Orwar O. and Ewing A.G.*  Anal Chem., 2003, 75: 4168-4175.

Artificial cells: unique insights into exocytosis using liposomes and lipid nanotubes. Cans A-S., Wittenberg N., Karlsson R., Sombers L., Karlsson M.,  Orwar O. and Ewing A.G.* Proc. Natl. Acad. Sci. USA, 2003, 100: 400-404.


Moving-wall-driven flows in nanofluidic systems. Karlsson R., Karlsson M.,  Karlsson A., Cans A-S., Bergenholz J., Akerman B., Ewing A. G., Voinova M., and Orwar O.* Langmuir, 2002, 18: 4186-4190.

Formation of geometrically complex lipid nanotube-vesicle networks of higher order topologies. Karlsson M., Sott K., Davidson M., Cans A-S., Linderholm P. and Orwar O.* Proc. Natl. Acad. Sci. USA, 2002, 99: 11573-11578.


Micropipette-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers. M. Karlsson, K. Sott, Cans A-S., Karlsson A., Karlsson R. and Orwar O.* Langmuir, 2001, 17: 6754-6758.

Molecular Engineering: Networks of nanotubes and containers. Karlsson A., Karlsson R., Karlsson M., Cans A-S., Stromberg A., Ryttsen F. and Orwar O.* Nature, 2001, 409: 150-152.

Measurement of the dynamics of exocytosis and vesicle retrieval at cell populations using a quartz crystal microbalance. Cans A-S., Höök F., Shupliakov O., Ewing A. G., Eriksson P., Brodin L., and Orwar O.* Anal Chem, 2001, 73: 5805-5811.